China CNC AC servo motor and driver low cost 2.3kw 15nm Servo motor for cnc milling lathe machine motor armature

Warranty: 1 years
Model Number: SZGH-13230AC
Frequency: 1500rpm
Phase: Single-phase
Protect Feature: Drip-proof
AC Voltage: 208-230 / 240 V
Efficiency: IE 4
continuous torque: 15N.M
peak torque: 30N.M
rated rotation speed: 1500r/min
rated current: 9.5A
rated voltage: 24V
motor length: 241mm
diameter of axle: 22mm
weight: 13kg
Matched driver: SZGH-SD2026 , SZGH-301
Certification: ce
Packaging Details: with carton every pcs in 1 carton Size: 30*29*22 Weight: 8kg
Port: HangZhou

SZGH-13230AC is 2.3KW ,15NM and 1500RPM servo motor, it is low cost , and very general-purpose type. Imported feedback components,original imported low-noise motor.There are 2 kinds type servo driver, SZGH-SD2026,SZGH-301, that matching for 2.3KW servo motor. There is also 1 dual servo driver,SZGH-302,that can control 2 pcs of 2.3KW servo motors synchronously. Related Model : SZGH-13380CC.

Packing list
SZGH-13230AC1 pcs
SZGH-SD20261 pcs
5 meter power cables 1 pcs
5 meter encoder cables 1 pcs
Manual 1 pcs
Note : if you want longer cables and absolute & brake motor , pls let me know at first !!
APPLICATION Recommend Products Why Choose Us FAQ 1. Who are we? We are based in ZheJiang ,which providing cnc total solutions&Robot arm, sell to Eastern Europe(20.00%),Mid East(20.00%),Southeast Asia(15.00%),Southern Europe(10.00%),South America(8.00%),North America(5.00%),Western Europe(5.00%),Eastern Asia(4.00%),Central America(4.00%),Northern Europe(4.00%),Africa(3.00%),Domestic Market(2.00%). 2. How can we guarantee quality? Always finishing a pre full testing by our professional engineers; Always final 100% Inspection before shipment; 3.Could you supply total cnc system? we can supply total cnc system, includes CNC controller, spindle drivers & motors, Axesdrivers & motors & related cables & kits,so you can plug and play.4. what services can we provide? 1).Accepted Delivery Terms: FOB,CFR,CIF,EXW,FAS,CIP,FCA,DDP,DDU,DAF´╝Ť 2).Accepted Payment Currency:USD,EUR,CAD,HKD,CNY; 3)).Accepted Payment Type: T/T,L/C,D/P D/A,Credit Card,PayPal,Western Union,Cash,Escrow; 4).Language Spoken:English,Chinese,Spanish,Japanese,Portuguese,German,Arabic,French,Russian,Korean,Italian and so on. 5.When can you receive our order? All goods will be produced well within 5 to 7 workdays, except the customized products.6.What is control mode for feeding Axes?Our Normal CNC support Pulse+Direction signals for feeding axes drivers;Our Modbus CNC support EtherCAT/Powerlink modbus for feeding axes drivers.7.What is control mode for spindle axes?There are dual analog voltage outputs(0~10V) for speed control of spindle axis Our Modbus CNC also support Pulse speed spindle,also use pulse to control speed of spindle servo system.8.Does your cnc support CZPT function?Yes,Our CNC lathe system can support most of turret,like Eletric turret,servo turret,counting turret,etc; We can edit special macro program & plc for special turrets also;And our CNC milling system support Linear type , umbrella type, arm type, turret type tool magazines.9.Does your cnc support booting logo exchange?Yes, no problem.

What Is a Gear Motor?

A gear motor is an electric motor coupled with a gear train. It uses either DC or AC power to achieve its purpose. The primary benefit of a gear reducer is its ability to multiply torque while maintaining a compact size. The trade-off of this additional torque comes in the form of a reduced output shaft speed and overall efficiency. However, proper gear technology and ratios provide optimum output and speed profiles. This type of motor unlocks the full potential of OEM equipment.

Inertial load

Inertial load on a gear motor is the amount of force a rotating device produces due to its inverse square relationship with its inertia. The greater the inertia, the less torque can be produced by the gear motor. However, if the inertia is too high, it can cause problems with positioning, settling time, and controlling torque and velocity. Gear ratios should be selected for optimal power transfer.
The duration of acceleration and braking time of a gear motor depends on the type of driven load. An inertia load requires longer acceleration time whereas a friction load requires breakaway torque to start the load and maintain it at its desired speed. Too short a time period can cause excessive gear loading and may result in damaged gears. A safe approach is to disconnect the load when power is disconnected to prevent inertia from driving back through the output shaft.
Inertia is a fundamental concept in the design of motors and drive systems. The ratio of mass and inertia of a load to a motor determines how well the motor can control its speed during acceleration or deceleration. The mass moment of inertia, also called rotational inertia, is dependent on the mass, geometry, and center of mass of an object.


There are many applications of gear motors. They provide a powerful yet efficient means of speed and torque control. They can be either AC or DC, and the two most common motor types are the three-phase asynchronous and the permanent magnet synchronous servomotor. The type of motor used for a given application will determine its cost, reliability, and complexity. Gear motors are typically used in applications where high torque is required and space or power constraints are significant.
There are two types of gear motors. Depending on the ratio, each gear has an output shaft and an input shaft. Gear motors use hydraulic pressure to produce torque. The pressure builds on one side of the motor until it generates enough torque to power a rotating load. This type of motors is not recommended for applications where load reversals occur, as the holding torque will diminish with age and shaft vibration. However, it can be used for precision applications.
The market landscape shows the competitive environment of the gear motor industry. This report also highlights key items, income and value creation by region and country. The report also examines the competitive landscape by region, including the United States, China, India, the GCC, South Africa, Brazil, and the rest of the world. It is important to note that the report contains segment-specific information, so that readers can easily understand the market potential of the geared motors market.


The safety factor, or SF, of a gear motor is an important consideration when selecting one for a particular application. It compensates for the stresses placed on the gearing and enables it to run at maximum efficiency. Manufacturers provide tables detailing typical applications, with multiplication factors for duty. A gear motor with a SF of three or more is suitable for difficult applications, while a gearmotor with a SF of one or two is suitable for relatively easy applications.
The global gear motor market is highly fragmented, with numerous small players catering to various end-use industries. The report identifies various industry trends and provides comprehensive information on the market. It outlines historical data and offers valuable insights on the industry. The report also employs several methodologies and approaches to analyze the market. In addition to providing historical data, it includes detailed information by market segment. In-depth analysis of market segments is provided to help identify which technologies will be most suitable for which applications.


A gear motor is an electric motor that is paired with a gear train. They are available in AC or DC power systems. Compared to conventional motors, gear reducers can maximize torque while maintaining compact dimensions. But the trade-off is the reduced output shaft speed and overall efficiency. However, when used correctly, a gear motor can produce optimal output and mechanical fit. To understand how a gear motor works, let’s look at two types: right-angle geared motors and inline geared motors. The first two types are usually used in automation equipment and in agricultural and medical applications. The latter type is designed for rugged applications.
In addition to its efficiency, DC gear motors are space-saving and have low energy consumption. They can be used in a number of applications including money counters and printers. Automatic window machines and curtains, glass curtain walls, and banknote vending machines are some of the other major applications of these motors. They can cost up to 10 horsepower, which is a lot for an industrial machine. However, these are not all-out expensive.
Electric gear motors are versatile and widely used. However, they do not work well in applications requiring high shaft speed and torque. Examples of these include conveyor drives, frozen beverage machines, and medical tools. These applications require high shaft speed, so gear motors are not ideal for these applications. However, if noise and other problems are not a concern, a motor-only solution may be the better choice. This way, you can use a single motor for multiple applications.


Geared motors are among the most common equipment used for drive trains. Proper maintenance can prevent damage and maximize their efficiency. A guide to gear motor maintenance is available from WEG. To prevent further damage, follow these maintenance steps:
Regularly check electrical connections. Check for loose connections and torque them to the recommended values. Also, check the contacts and relays to make sure they are not tangled or damaged. Check the environment around the gear motor to prevent dust from clogging the passageway of electric current. A proper maintenance plan will help you identify problems and extend their life. The manual will also tell you about any problems with the gearmotor. However, this is not enough – it is important to check the condition of the gearbox and its parts.
Conduct visual inspection. The purpose of visual inspection is to note any irregularities that may indicate possible problems with the gear motor. A dirty motor may be an indication of a rough environment and a lot of problems. You can also perform a smell test. If you can smell a burned odor coming from the windings, there may be an overheating problem. Overheating can cause the windings to burn and damage.
Reactive maintenance is the most common method of motor maintenance. In this type of maintenance, you only perform repairs if the motor stops working due to a malfunction. Regular inspection is necessary to avoid unexpected motor failures. By using a logbook to document motor operations, you can determine when it is time to replace the gear motor. In contrast to preventive maintenance, reactive maintenance requires no regular tests or services. However, it is recommended to perform inspections every six months.

China CNC AC servo motor and driver low cost 2.3kw 15nm Servo motor for cnc milling lathe machine     motor armatureChina CNC AC servo motor and driver low cost 2.3kw 15nm Servo motor for cnc milling lathe machine     motor armature
editor by czh2023-02-08